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Abstract
To resolve the computational complexity of computer vision algorithms, one
of the solutions is to perform some low-level image processing on the sensor
focal plane. It becomes a smart sensor device called a retina. This concept
makes vision systems more compact. It increases performance thanks to the
reduction of the data flow exchanges with external circuits. This paper
presents a comparison between two different vision system architectures.
The first one involves a smart sensor including analogue processors allowing
on-chip image processing. An external microprocessor is used to control the
on-chip dataflow and integrated operators. The second system implements a
logarithmic CMOS/APS sensor interfaced to the same microprocessor, in
which all computations are carried out. We have designed two vision
systems as proof of concept. The comparison is related to image processing
time.

Keywords: instrumentation, vision system architecture, retinas, CMOS/APS
sensors

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Intelligent vehicles and robots need sensors with fast response
time, low energy consumption and the ability to extract high-
level information from the environment [1, 2]. Adding
hardware operators near pixels increases the computations
potentiality and reduces inputs/outputs operations towards the
central processor unit.

CCD technology has been the dominant tool for
electronic image sensors for several decades due to their high
photosensitivity, low fixed pattern noise (FPN), small pixel
and large array sizes.

However, in the last decade, CMOS (complementary
metal oxide semiconductor) sensors drew attention from many
researchers and industries due to their low energy dissipation,
low cost, on chip processing capabilities and their integration
on a standard or quasi-standard VLSI (very large scale
integration) process.

Still, raw output images acquired by CMOS sensors need
further processing, mainly because of noise, blurriness and
poor contrast. In order to tackle these problems, image-
processing circuits are typically associated with image sensors
as a part of the whole vision system. Usually, two areas coexist
within the same chip for sensing and preprocessing that are
implemented onto the same integrated circuit.

Integration of pixel array and image processing circuits on
a single monolithic chip makes the system more compact and
allows enhancing the behaviour and response of the sensor.
Hence, to achieve low-level image processing tasks (early-
vision), an artificial retina is a smart sensor which integrates
analogue and/or digital processing circuits in the pixel [3, 4]
or at the edge of the pixel array [5].

The aim of this paper is to obtain a conclusion on the
aptitude of retinas, as smart sensors, to become potential
candidates for a system on a chip, consequently to reach an
algorithm-architecture adequacy.
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We have made a comparison between two different
architectures dedicated to a vision system. The first one
implements a logarithmic APS (active pixel sensor) imager
and a microprocessor. The second involves the same
microprocessor with a CMOS artificial retina that implements
hardware operators and analogue microprocessors. We have
designed two vision systems. The comparison is related to
image processing time.

2. Review of integrated operators on smart sensors

Different partitions for the architectural implementation of on-
chip image processing with CMOS image sensors are proposed
in [6]. The partition does not take into account only the
circuit density, but also includes the nature of image processing
algorithms and the choice of the operators integrated in its focal
plane with the pixels. The difference between partitions is the
location of the signal processing unit, known as a processing
element (PE); this location becomes the discriminating factor
of the different implementation structures.

Pixel processing, like the approach presented by Dudeck
in [8], consists of one processing element (PE) per pixel. Each
pixel typically consists of a photodetector, an active buffer and
a signal processing element. Pixel-level processing promises
many significant advantages, including low power as well as
the ability to adapt image capture and processing to different
environments during light integration. However, the popular
use of this design idea has been blocked by severe limitations
on pixel size, the low fill factor and the restricted number of
transistors in each PE.

In view of great block partitioning, a global processing
unit can be implemented beside the array of pixels. This is
one of the obvious integration methods due to its conceptual
simplicity and the flexibility of the parametrization of the
design features. Each PE is located at the serial output channel
at the end of the chip. There are fewer restrictions on the
implementation area of the PE, leading to a high fill factor of
the pixel and a more flexible design. However, the bottleneck
of the processing speed of the chip becomes the operational
speed of the PE, and therefore, a fast PE is essentially required.
The fast speed of the PE potentially results in high complexity
of the design [7] and high power consumption of the chip [9].

Another structure is frame memory processing. A
memory array with the same number of pixels as the sensor is
located below the imager array. Typically, the image memory
is an analogue frame memory that requires less complexity
of design and processing time [10]. However, this structure
consumes a large area, large power and high fabrication cost.
Structures other than the frame memory face difficulty in
implementing temporal storage. The frame memory is the
most adequate structure that permits iterative operation and
frame operation, critical for some image processing algorithms
in a real time mode.

Even with these disadvantages, smart sensors are still
attractive, mainly because of their effective cost, size and speed
with various on-chip functionalities [11]. Simply, benefits
exist when a camera with a computer is converted into a small
sized vision system on a chip (SoC).
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Figure 1. Sensor architecture.

3. Systems description

3.1. An artificial retina based vision system (PARIS-ARM)

3.1.1. Sensor architecture. A PARIS (parallel analogue
retina-like image sensor) is an architecture model which
implements, in the same circuit, an array of pixels,
integrating memories and an analogue processor vector
[12]. The architecture, shown in figure 1, allows a high
degree of parallelism and a balanced compromise between
communication and computations. Indeed, to reduce the area
of the pixels and to increase the fill factor, the image processing
is centred on a row of processors. Such an approach presents
the advantage of enabling the design of complex processing
units without decreasing the resolution. In return, because
the parallelism is applied to a row of pixels, the computations
which concern more than one pixel have to be processed in a
sequential way. However, if a sequential execution increases
the time of processing for a given operation, it allows a more
flexible process. With this typical readout mechanism of an
image, column processing offers the advantages of parallel
processing that permit high frequency and thus low power
consumption. Furthermore, it becomes possible to chain basic
functions in an arbitrary order, as in any digital SIMD (single
instruction–multiple data) machine. The resulting low-level
information extracted by this can then be processed by a
microprocessor.

The array of pixels constitutes the core of the architecture.
Pixels can be randomly read allowing windows of images
or regions of interest (RoI). The selected mode, for the
transduction of light, is the integration mode. Two vertical
bipolar transistors, associated in parallel, constitute the
photosensor. For a given surface, compared to classic
photodiodes, this disposal increases the sensitivity while
preserving a large bandwidth [13], and a short response time
can be obtained in a snapshot acquisition. The photosensor
is then used as a current source that discharges a capacitor
previously set to a voltage Vref. Semi-parallel processing
can use the four MOS capacitors, integrated in each pixel,
as analogue memories to store temporary results (figure 2).
One of the four memories is used to store the analogue voltage
derived from the photo-sensor. The pixel area is 50 × 50 µm2

with a fill factor equal to 11%.
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Figure 2. Pixel scheme (OTA: operational transconductance
amplifier).

AP: Analog Processor 

BU: Boolean Unit 

Reg: Registers

Mux: Multiplexer 

Figure 3. Analogue–digital processor (processing unit) architecture.

This approach eliminates the input/output bottleneck
between extra circuits even if there is a restriction on the
implementation area, particularly for column width. Still,
there is suppleness when designing the processing operators’
area: the processing implementation is more flexible relative
to the length of the columns. Pixels of the same column
exchange their data with the corresponding processing element
(PE) through a digital analogue bus (DAB). To access any of
its four memories, each pixel includes a bi-directional (4 to 1)
multiplexer. A set of switches allows selection of the voltage
stored in one of the four capacitors. This voltage is copied
out on the DAB thanks to a bi-directional amplifier. The
same amplifier is used to write the same voltage on a chosen
capacitor.

The array of pixels is associated with a vector of
processors operating in an analogue/digital mixed mode
(figure 3). In this paper, we shall detail only the analogue
processing unit: AP (figure 4). Each AP unit implements
three capacitors—one OTA (operational transconductance
amplifier) and a set of switches that can be controlled by a
sequencer.

Table 1. Main characteristics of the PARIS circuit.

Circuit area (including pads) 10 mm2

Resolution (pixels) 16 × 16
Number of APUs 16
Pixel area 50 × 50 µm2

Area per processing unit 50 × 200 µm2

Clock frequency 10 MHz
Processing unit power consumption 300 µW
Row (16 pixels) power consumption 100 µW

Its functioning is much like a bit stream DAC: an input
voltage sets the initial charges in Cin1. The iterative activation
of switches ‘mean’ and/or ‘reset’ reduces the amount of charge
in Cin1. When ‘mean’ is activated (Cin1 and Cin2 are connected
together), and since Cin1 and Cin2 are at equal values, the charge
in Cin1 is divided by 2. Iterating the operation N times, this
step leads to a charge in Cin1 of the form

Qin 1 = 〈Cin 1 · Vin 1〉/2N. (1)

Thanks to the OTA, the remaining charge in the capacitor
Cin1 is transferred to Cout when switch ‘Add’, or ‘Sub’, is ‘On’.
Therefore, the charges initially in Cin1 are multiplied by a
programmable fixed-point value. The capacitor Cout is so used
as an accumulator that adds or subtracts charges flowing from
Cin1. More detailed examples of operations can be found in
[14].

In order to validate this architecture, a first prototype
circuit has been designed including 16 × 16 pixels and 16
analogue processing units. This first circuit allows validation
of the integrated operators through some image processing
algorithms such as edge and movement detection.

Using a standard 0.6 µm CMOS, DLP (double-layer
polysilicon) technology, this prototype ‘PARIS1’ is designed
to support up to 256 × 256 pixels. Considering this
architecture and the technology used, an artificial retina with
higher resolution would lead to hard design constraints on
pixel access time and power consumption. To reduce costs the
first prototype implements 16 × 16 pixels with 16 analogue
processors.

To first order, the accuracy of the computations depends
on the dispersion of the component values. The response
dispersion between two AP units is 1%. The main
characteristics of this chip are summarized in table 1. Note
that the given pixel power consumption is its peak power;
i.e., when the pixel is addressed. In other cases the OTA of
the pixels are switched off and the pixel power consumption is
only due to C4 resetting. In the same way, when the processing
unit is inactive its OTA is switched off. Hence, the maximum
power of the analogue cells is C ∗ [Ppixel + PProcessing Unit],
where C is the number of columns, Ppixel and PProcessing Unit are
respectively the pixel power and the processing unit power.

3.1.2. Global architecture (PARIS-ARM). We have designed
a vision system (PARIS-ARM) based on a PARIS1 retina,
implementing converter DAC/ADC and a CPU core: the
16/32-bit ARM7TDMI1 RISC processor. It is a low-
power, general-purpose microprocessor, operating at 50 MHz,
developed for custom integrated circuits.

1 ARM system-on-chip architecture (2nd edition), Steve Furber, September
2000.
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APout: Analog Processor Output 
CMPout: Comparator output

APin: Analog Processor input

Figure 4. Analogue processor (AP) unit scheme.

The embedded in-circuit emulator (ICE) is additional
hardware that is incorporated with the ARM core. Supported
by the ARM software and the test access port (TAP), it allows
debugging, downloading and testing software on the ARM
microprocessor.

The retina, used as a standard peripheral of the
microprocessor, is dedicated to image acquisition and low-
level image processing.

With all principal components listed above, we obtain
an architecture that uses a fully programmable smart retina.
Thanks to the analogue processing units, this artificial retina
extracts low-level information (e.g. edge detection). Hence,
the system, supported by the processor, becomes more
compact and can achieve processing suitable for real-time
applications.

The advantage of this architecture remains in the parallel
execution of a consequent number of low-level operations in
the array integrating operators shared by groups of pixels.
This allows saving expensive resources of computation, and
decreasing the energy consumption. In terms of computing
power, this structure is more advantageous than that based
on a CCD sensor associated with a microprocessor [15].
Figure 5 shows the global architecture of the system and
figure 6 gives an overview of the experimental module (PARIS-
ARM) implemented for the test and measurements.

3.2. A logarithmic CMOS sensor based vision system
(FUGA-ARM)

In recent years CMOS image sensors have started to attract
attention in the field of electronic imaging that was previously
dominated by charge-coupled devices (CCD). The reason is
not only related to economic considerations but also to the
potential of realizing devices with capabilities not achievable
with CCDs. For applications where the scene light intensity
varies over a wide range, the dynamic range is a characteristic
that makes CMOS image sensors attractive in comparison with
CCDs [17]. An instance is a typical scene encountered in an

Figure 5. Global architecture of the PARIS1 based vision system.

outdoor environment where the light intensity varies over a
wide range, such as, for example, six decades. Image sensors
with logarithmic response offer a solution in such situations.
However, many works have reported on a high dynamic range
of these logarithmic CMOS sensors having 130 dB like a
dynamic [18, 19].

Since the logarithmic sensors are non-integrating sensors
(there is no control of the integration time), they can be an
alternative to linear CMOS sensors. Due to their large dynamic
range, they can deal with images having large contrast. This
makes them very suitable for outdoor applications.
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Figure 6. Experimental module PARIS-ARM.

Figure 7. Second architecture implementing a logarithmic CMOS
sensor and an ARM7TDMI microprocessor.

Logarithmic CMOS Sensor

(1024x1024 Pixels) 

Figure 8. The logarithmic CMOS sensor.

With random access, regions of interest (ROI) can be
read out and processed. This reduces the image processing,
resulting in faster image processing systems.

We have modelled a vision system (FUGA-ARM) whose
architecture, shown in figure 7, is based on a logarithmic
CMOS sensor (FUGA1000, figure 8) from FillFactory NV
(Belgium) [20] and an ARM microprocessor (the same used
for the PARIS-ARM vision system).

The CMOS sensor (FUGA1000) is a 0.4528 inch (type-
2/3) random addressable 1024 × 1024 pixels. It has a
logarithmic light power to signal conversion. This monolithic
digital chip integrates a 10-bit ADC and digital gain/offset
control. It behaves like a 1 Mbyte ROM. After the application

of an X–Y address, corresponding to the X–Y position of a
pixel in the array, a 10-bit digital word corresponding to light
intensity on the addressed pixel is returned.

Even if the sensor is really random addressed, pixels do not
have a memory and there is no charge integration. Triggering
and snapshot (synchronous shutter) are not possible.

4. Applications

4.1. On chip image processing

The basis of the smart vision system on chip concept is
that analogue VLSI systems with low precision are sufficient
for implementing many low-level vision algorithms for
application-specific tasks. Conventionally, smart sensors are
not general-purpose devices. They are specifically designed
for dedicated applications.

Yet, in this paper, we do not wish to limit implementations
to application-specific tasks, but also to allow this
implementation to be used with general-purpose applications
such as DSP2-like image processors with programmability.
The idea is based on the fact that many of the early level image
processing operations, when used with general-purpose chips,
are commonly shared with many image processors and do not
require programmability. From the point of view of on-chip
implementation, such algorithms are relatively pre-determined
and fixed and their low precision can be compensated later by
back-end processing. Here, we will investigate what kind
of image processing algorithms can be integrated on smart
sensors as a part of early vision sequences and we will discuss
their merits and the issues that designers should consider in
advance.

General image processing consists of several image
analysis processing steps: image acquisition, pre-processing,
segmentation, representation or description, recognition and
interpretation. This order can vary for different applications,
and some stages of the processes can be omitted.

Local operation is also called mask operation where
each pixel is modified according to the values of the pixel’s
neighbours (using kernel convolution). Denoting the pixel
grey-levels at any location by Pxy , the response of a mask
(3 × 3 kernel convolution as an example) is given by
equations (2) and (3):

Oxy =
3∑

i=1

3∑
j=1

KijPx+i−2,y+j−2 (2)

K =




k11 k21 k31

k12 k22 k32

k13 k23 k33


 . (3)

The grey-level Pxy of the pixel located at the (x, y) position
is replaced by the Oxy value if the kernel mask is at the (x,
y) location in the image. This computation is operated on
each pixel moving the mask by one pixel location in the image
at each step. Linear spatial filters are defined such that the
final pixel value, Oxy , can be computed as a weighted sum of
convolution masks (nonlinear filters cannot be implemented in
this way).

2 Digital signal processor.
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Figure 9. Diagram of the L filter operation.

In the above case, a 3 × 3 local mask was taken as an
example for the convolution mask. However, the size of the
convolution mask can be expanded to 5 × 5, 7 × 7, 9 × 9, and
larger, depending on the filter to be implemented.

For the on-chip integration with image sensors, local
operations provide advantages of real time operation in
acquisition and processing images, such as implementations
of many practical linear spatial filters and image enhancement
algorithms.

In order to understand the nature of a local operation and to
find an adequate relationship between algorithms and on-chip
implementations, we will look into the most usual algorithms,
grouped according to the similarity of functional processing.
The diagram presented in figure 9 allows understanding of
the functioning of such an architecture (where each column
is assigned to an analogue processor). We choose a classical
spatial filter example (a convolution with a 3×3 matrix). The
Laplacian kernel L used is given by the matrix (4)

L =
0 –1/4 0

–1/4 1 –1/4

0 –1/4 0 

. (4)

Pixels of the same row are simultaneously processed
by the analogue processor vector and the computations are
iterated on image rows. The arithmetic operations are carried
out in analogue. The accumulation of the intermediate
results is achieved in the analogue processor using the
internal analogue registers. Starting from an acquired image,
figure 10 shows the L filtering operation result of an N × N
pixel image, obtained by PARIS1 (N = 16). Such an operation
is achieved in 6.8 ms. This computation time is global due
to T = N · (Tadd + 4Tdiv + 4Tsub), where Tadd, Tdiv and Tsub are

Figure 10. Original image (left) and filtered image (right).

the respective one pixel computation times for an addition, a
division and a subtraction operation. The computation time is
proportional only to the number of rows and more elaborated
algorithms can be implemented similarly.

Similar to averaging or smoothing, differentiation can
be used to sharpen an image leaving only boundary lines
and edges of the objects. This is a high pass filter. The
most common methods of differentiation in image processing
are the difference, the gradient and Laplacian operators.
The difference filter is the simplest form of differentiation
subtracting adjacent pixels from the centred pixel in the
horizontal and vertical directions. The gradient filters
represent the gradients of the neighbouring pixels (image
differentiation) in the forms of matrices. These gradient
approaches and their mask implementations are represented
with various methods: Robert, Prewitt, Sobel, Kirsch and
Robinson methods [21].

The different local operations can be categorized into
three major groups: smoothing filters, sharpening filters
and Laplacian edge detection filters. Examples of the
local operation algorithms are described in [22]. We have
successfully implemented and tested a number of algorithms,
including convolution, linear filtering, edge detection, motion
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Rough image Binary Image
Result of the implemented comparator

Vertical Sobel operation
Result of the analog processor vector 

Horizontal Sobel operation
Result of the analog processor vector

Figure 11. Examples of processed images.

detection and estimation. Some examples are presented below.
Images are processed with different values of luminosity using
the exposure time self-calibration. Figure 11 gives examples
of processed images in the luminosity range of 10–1000
Lux.

4.2. Off chip FPN correction and image processing

The major drawback of the logarithmic sensor is the presence
of time-invariant noise in the images. The fixed pattern
noise (FPN) is caused by the non-uniformity of the transistor
characteristics. In particular, threshold voltage variations
introduce a voltage-offset characteristic for each pixel. The
continuous-time readout of a logarithmic pixel makes use of
correlated double sampling for the suppression of static pixel-
to-pixel offsets quite impossible. As a result, the raw image
output of such a sensor contains a large overall non-uniformity.

The downstream system of the sensor is then used to
compensate the FPN: as the FPN is static in time, a simple look-
up table with the size of the sensor’s resolution can be used for
a first-order correction of each individual pixel. Higher-order
corrections can be employed when the application demands
higher image quality. The FPN noise is removed from the
images by subtracting from each pixel value the corresponding
offset.

For the CMOS/APS sensor, the FPN correction is
performed by the ARM microprocessor in real time and it
is transparent (this operation can be achieved by an FPGA
circuit, for example). The sensor is shipped with one default
correction frame. Figure 12 shows an image with the FPN and
figure 13 gives the image after FPN correction.

The response of the logarithmic CMOS sensor typically is
expressed as 50 mV output per decade of light intensity. After
first-order FPN calibration and using an ADC, a response non-
uniformity of below 2 mV remains, being quite constant over

Figure 12. Image with FPN.

Figure 13. Image with FPN removed.

the optical range. This non-uniformity translates to about 4%
of a decade. The temporal noise of the logarithmic sensor is
0.2 mV RMS.

For the FUGA-ARM vision system, images are
processed on the ARM microprocessor. We established
several algorithms of image processing similar to those
established for the PARIS-ARM vision system. Other more
complicated algorithms which require diversified computing
with exponential power were also established with the
FUGA/ARM system. We recall that to carry out comparisons
relating to the processing times, we chose to use the
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Figure 14. Examples of image processing implemented with the
FUGA1000 sensor based vision system.

same processor (ARM7TDMI) for the different implemented
systems.

The filter we used has been designed by Garcia Lorca
[23]. This filter is a simplification of the Deriche filter [24],
the recursive implementation of the optimal Canny filter. The
smoother is applied horizontally and vertically on the image,
in a serial way. Then a derivator is applied. The Garcia Lorca
derivator is, after simplification of Deriche, derivator, a 3 × 3
convolution kernel instead of a recursive derivator,

y(n) = (1 − λ)2 · x(n) + 2λ · y(n − 1) − λ2 · y(n − 2) (5)

y(n) = (1 − γ )2x(n) + 2γy(n − 1) − γ 2y(n − 2), (6)

with

γ = e−α. (7)

Here x(n) is the pixel source value, y(n) is the pixel destination
value and n is the pixel index in a one-dimensional table
representing the image. γ is an exponential parameter
allowing much more filtering flexibility, depending on the
noise within the image. If the image is very noisy we
use a very smoothing filter: α = [0.5, 0.7]; otherwise we
use bigger values of α: α = [0.8, 1.0]. Figure 14 gives
examples of smoothing and derivator filters implemented with
the FUGA-ARM vision system and applied to 120 × 120 pixel
images.

5. Time comparison in image processing

The aim is to compare the vision system implementing the
logarithmic CMOS imager (FUGA-ARM) with the one based
on the PARIS retina (PARIS-ARM). This comparison is related
to image processing time and does not take into account the
exposure time for which we developed a continuous auto-
calibration algorithm that can manage this state for our vision
system. This avoids pixel saturation and gives an adaptive
amplification of pixel output, which is necessary for post-
processing.

The calibration concept is based on the fact that when
using a photo-sensor in an integration mode, a constant
luminosity leads to a voltage drop that varies according to
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Figure 15. Processing time of an edge detection: PARIS-ARM
architecture versus ARM/logarithmic CMOS sensor.

the exposure time. If the luminosity is high, the exposure
time must be decreased; on the other hand if the luminosity is
low the exposure time should be increased. One should then
aim at lower exposure time to have faster image processing
algorithms.

We have used a Laplacian edge detection algorithm
and a Sobel filter algorithm to take several measurements
of the computation times relating to the two architectures
described below. For the artificial retina based system, these
computations are carried out by the analogue processors
integrated on-chip. For the FUGA-ARM system, these
computations are carried out by the ARM microprocessor.

The two computation time graphics presented in
figure 15 translate the diverse computing times for different
square sensor pixel resolutions for both systems. It is
significant to note that the acquisition time of the frames is
not included in these measurements in order to evaluate just
the data processing computing time. Times relating to the
PARIS artificial retina were obtained by extension of the data
processing timing obtained from those of the first prototype
[12].

We deduce that the computation time for the FUGA-ARM
system varies according to the pixel number N2 (quadratic
form). Hence, the computation time for the PARIS-ARM
system varies according to the row number N (linear form)
thanks to the analogue processor vector.

Equation (8) gives the definition of the CPP (cycle per
pixel) of a processor.

FCLK is the processor frequency, T is the time computing,
L is the row number and C is the column number:

CPP = T × FCLK

L × C
. (8)

Figure 16 shows the evolution of the CPP for the PARIS-
ARM system and FUGA-ARM system.

Consequently, the microcontroller of the FUGA-ARM
system carries out a uniform CPP relative to regular image
processing independently of the number of processed pixels.
For the PARIS-ARM system, the CPP factor is inversely
proportional to the row number (N).

As a result, our implementation demonstrates the
advantages of the single chip solution. Applications involving
image processing algorithms will be less complex and efficient
especially for high resolution.
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Figure 16. Evolution of the CPP (cycle per pixel) for PARIS-ARM and the FUGA-ARM architectures.

6. Conclusion

When we wish to carry out real-time image acquisition and
processing, hardware processing implementation with smart
sensors becomes a great advantage. This paper presents one
experience of this concept named a retina.

It is concluded that on-chip image processing with retinas
will offer the benefits of fast and parallel processing. Since
each vision algorithm has its own applications and design
specifications, it is difficult to predetermine an optimal design
architecture for every vision algorithm. However, in general,
the column structures appear to be a good choice for typical
image processing algorithms.

We have presented the architecture and the
implementation of a smart integrated artificial retina
based vision system. The goal is the integration of a
microprocessor in the artificial retina to optimize the
implemented hardware operators. Hence, designers and
researchers can have a better understanding of smart sensing
for intelligent vehicles [25].

We propose implementing such a system with high
resolution in a complex application: intelligent vehicle
embedding smart sensors for autonomous collision avoidance
and object tracking.
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